\begin{tabbing} agree\_on\_common($T$;${\it as}$;${\it bs}$) \\[0ex]$\,\equiv$$_{\mbox{\scriptsize def}}$$\;\;$Ca\=se of ${\it as}$\+ \\[0ex]nil $\rightarrow$ True \\[0ex]$a$.${\it as'}$, rec: $\rightarrow$ Ca\=se of ${\it bs}$\+ \\[0ex]nil $\rightarrow$ True \\[0ex]$b$.${\it bs'}$, rec: $\rightarrow$ \=$\neg$($a$ $\in$ ${\it bs}$ $\in$ $T$) \& agree\_on\_common($T$;${\it as'}$;${\it bs}$)\+ \\[0ex]$\vee$ $\neg$($b$ $\in$ ${\it as}$ $\in$ $T$) \& agree\_on\_common($T$;${\it as}$;${\it bs'}$) \\[0ex]$\vee$ $a$ $=$ $b$ $\in$ $T$ \& agree\_on\_common($T$;${\it as'}$;${\it bs'}$) \-\-\-\\[0ex]\emph{(recursive)} \end{tabbing}